Lecture on Model Selection Stat 431 , Summer 2012

نویسنده

  • Hyunseung Kang
چکیده

In model selection, we seek a relationship between Y and X,1, ..., X,p that is parsimonious, but still retains good predictive power, as represented by the SSE. Each subset of X,1, ..., X,p that will be used for the fit is one particular model, denoted as M, for studying the relationship between Y and X,1, ..., X,p and we want to choose a subset ofX,1, ..., X,p that achieves this goal. The selection procedures described below attempt to achieve this goal through a variety of methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lectures on Multiple Linear Regression Stat 431 , Summer 2012

Multiple regression is an extension to simple regression in several ways. First, instead of examining a linear relationship bewteen two measurements, Xi and Yi, multiple regression aims to explain relationships between p measurements of an object i, denoted as (Xi,1, ..., Xi,p) and Yi. Based on a sample of n points, with each point having measurements (Yi, Xi,1, ..., Xi,p), multiple regression ...

متن کامل

Lecture Eight - STAT 212a

1 Sudakov Minoration Suppose that (T, ρ) is a finite metric space and let {X t , t ∈ T } be a stochastic process indexed by T satisfying

متن کامل

Lecture Three - STAT 212a

The mutual information I(θ; X) between two random variables θ and X is defined as the Kullback-Leibler divergence between their joint distribution and the product of their marginal distributions. It is interpreted as the amount of information that X contains about θ.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012